Aug 31, 2021

Easy control over applications' network access using nftables and systemd cgroup-v2 tree

Linux 5.13 finally merged nftables feature that seem to have been forgotten and lost as a random PATCH on LKML since ~2016 - "cgroupsv2" path match (upstreamed patch here).

Given how no one seemed particulary interested in it for years, guess either distros only migrated to using unified cgroup hierarchy (cgroup-v2) by default rather recently, so probably not many people use network filtering by these either, even though it's really neat.

On a modern linux with systemd, cgroup tree is mostly managed by it, and looks something like this when you run e.g. systemctl status:

/init.scope # pid-1 systemd itself
/system.slice/systemd-udevd.service
/system.slice/systemd-networkd.service
/system.slice/dbus.service
/system.slice/sshd.service
/system.slice/postfix.service
...
/system.slice/system-getty.slice/getty@tty1.service
/system.slice/system-getty.slice/getty@tty2.service
...
/user.slice/user-1000.slice/user@1000.service/app.slice/dbus.service
/user.slice/user-1000.slice/user@1000.service/app.slice/pulseaudio.service
/user.slice/user-1000.slice/user@1000.service/app.slice/xorg.service
/user.slice/user-1000.slice/user@1000.service/app.slice/WM.service
...

I.e. every defined app neatly separated into its own cgroup, and there are well-defined ways to group these into slices (or manually-started stuff into scopes), which is done automatically for instantiated units, user sessions, and some special stuff.

See earlier "cgroup-v2 resource limits for apps with systemd scopes and slices" post for more details on all these and some neat ways to use them for any arbitrary pids (think "systemd-run") as well as on-the-fly cgroup-controller resource limits.

Such "cgroup-controller" resource limits notably do not include networking, as it's historically been filtered separately from cpu/memory/io stuff via systemd-wide firewalls - ipchains, iptables, nftables - and more recently via various eBPFs microkernels - either bpfilter or cgroup and socket-attached BPFs (e.g. "cgroup/skb" eBPF).

And that kind of per-cgroup filtering is a very useful concept, since you already have these nicely grouping and labelling everything in the system, and any new (sub-)groups are easy to add with extra slices/scopes or systemd-run wrappers.

It allows you to say, for example - "only my terminal app is allowed to access VPN network, and only on ssh ports", or "this game doesn't get any network access", or "this ssh user only needs this and this network access", etc.

systemd allows some very basic filtering for this kind of stuff via IPAddressAllow=/IPAddressDeny= (systemd.resource-control) and custom BPFs, and these can work fine in some use-cases, but are somewhat unreliable (systemd doesn't treat missing resource controls as failure and quietly ignores them), have very limited matching capabilities (unless you code these yourself into custom BPFs), and are spread all over the system with "systemd --user" units adding/setting their own restrictions from home dirs, often in form of tiny hard-to-track override files.

But nftables and iptables can be used to filter by cgroups too, with a single coherent and easy-to-read system-wide policy in one file, using rules like:

add rule inet filter vpn.whitelist socket cgroupv2 level 5 \
  "user.slice/user-1000.slice/user@1000.service/app.slice/claws-mail.scope" \
  ip daddr mail.intranet.local tcp dport {25, 143} accept

I already use system/container-wide firewalls everywhere, so to me this looks like a more convenient and much more powerful approach from a top-down system admin perspective, while attaching custom BPF filters for apps is more useful in a bottom-up scenario and should probably mostly be left for devs and packagers, shipped/bundled with the apps, just like landlock or seccomp rulesets and such wrappers - e.g. set in apps' systemd unit files or flatpak containers (flatpaks only support trivial network on/off switch atm though).

There's a quirk in these "socket cgroupsv2" rules in nftables however (same as their iptables "-m cgroup --path ..." counterpart) - they don't actually match cgroup paths, but rather resolve them to numeric cgroup IDs when such rules are loaded into kernel, and not automatically update them in any way afterwards.

This means that:

  • Firewall rules can't be added for not-yet-existing cgroups.

    I.e. loading nftables.conf with a rule like the one above on early boot would produce "Error: cgroupv2 path fails: No such file or directory" from nft (and "xt_cgroup: invalid path, errno=-2" error in dmesg for iptables).

  • When cgroup gets removed and re-created, none of the existing rules will apply to it, as it will have new and unique ID.

Basically such rules in a system-wide policy config only work for cgroups that are created early on boot and never removed after that, which is not how systemd works with its cgroups, obviously - they are entirely transient and get added/removed as necessary.

But this doesn't mean that such filtering is unusable at all, just that it has to work slightly differently, in a "decoupled" fashion:

Following the decoupled approach: If the cgroup is gone, the filtering
policy would not match anymore. You only have to subscribe to events
and perform an incremental updates to tear down the side of the
filtering policy that you don't need anymore. If a new cgroup is
created, you load the filtering policy for the new cgroup and then add
processes to that cgroup. You only have to follow the right sequence
to avoid problems.

There seem to be no easy-to-find helpers to manage such filtering policy around yet though. It was proposed for systemd itself to do that in RFE-7327, but as it doesn't manage system firewall (yet?), this seem to be a non-starter.

So had to add one myself - mk-fg/systemd-cgroup-nftables-policy-manager (scnpm) - a small tool to monitor system/user unit events from systemd journal tags (think "journalctl -o json-pretty") and (re-)apply rules for these via libnftables.

Since such rules can't be applied directly, and to be explicit wrt what to monitor, they have to be specified as a comment lines in nftables.conf, e.g.:

# postfix.service :: add rule inet filter vpn.whitelist \
#   socket cgroupv2 level 2 "system.slice/postfix.service" tcp dport 25 accept

# app-mail.scope :: add rule inet filter vpn.whitelist socket cgroupv2 level 5 \
#   "user.slice/user-1000.slice/user@1000.service/app.slice/app-mail.scope" \
#   ip daddr mail.intranet.local tcp dport {25, 143} accept

add rule inet filter output oifname my-vpn jump vpn.whitelist
add rule inet filter output oifname my-vpn reject with icmpx type admin-prohibited

And this works pretty well for my purposes so far.

One particularly relevant use-case as per example above is migrating everything to use "zero-trust" overlay networks (or just VPNs), though on modern server setups access to these tend to be much easier to manage by running something like innernet (or tailscale, or one of a dozen other WireGuard tunnel managers) in netns containers (docker, systemd-nspawn, lxc) or VMs, as access in these systems tend to be regulated by just link availability/bridging, which translates to having right crypto keys for a set of endpoints with wg tunnels.

So this is more of a thing for more complicated desktop machines rather than proper containerized servers, but still very nice way to handle access controls, instead of just old-style IP/port/etc matching without specifying which app should have that kind of access, as that's almost never universal (outside of aforementioned dedicated single-app containers), composing it all together in one coherent systemd-wide policy file.

Aug 30, 2021

Sharing Linux kernel build cache between machines

Being an old linux user with slackware/gentoo background, I still prefer to compile kernel for local desktop/server machines from sources, if only to check which new things get added there between releases and how they're organized.

This is nowhere near as demanding on resources as building a distro kernel with all possible modules, but still can take a while, so not a great fit for my old ultrabook or desktop machine, which both must be 10yo+ by now.

Two obvious ways to address this seem to be distributed compilation via distcc or just building the thing on a different machine.

And distcc turns out to be surprisingly bad for this task - it doesn't support gcc plugins that modern kernel uses for some security features, requires suppressing a bunch of gcc warnings, and even then with or without pipelining it eats roughly same amount of machine's CPU as a local build, without even fully loading remote i5 machine, as I guess local preprocessing and distcc's own overhead is a lot with the kernel code already.

Second option is a fully-remote build, but packaging just kernel + module binaries like distros do there kinda sucks, as that adds an extra dependency (for something very basic) and then it's hard to later quickly tweak and rebuild it or add some module for some new networking or hardware thingy that you want to use - and for that to be fast, kbuild/make's build cache of .o object files needs to be local as well.

Such cache turns out to be a bit hard to share/rsync between machines, due to following caveats:

  • Absolute paths used in intermediate kbuild files.

    Just running mv linux-5.13 linux-5.13-a will force full rebuild for "make" inside, so have to build the thing in the same dir everywhere, e.g. /var/src/linux-5.13 on both local/remote machines.

    Symlinks don't help with this, but bind mounts should, or just using consistent build location work as well.

    There's a default-disabled KBUILD_ABS_SRCTREE make-flag for this, with docs saying "Kbuild uses a relative path to point to the tree when possible", but that doesn't seem to be case for me at all - maybe "when possible" is too limited, or was only true with older toolchains.

  • Some caches use "ls -l | md5" as a key, which breaks between machines due to different usernames or unstable ls output in general.

    One relevant place where this happens for me is kernel/gen_kheaders.sh, and can be worked around using "find -printf ..." there:

    % patch -tNp1 -l <<'EOF'
    diff --git a/kernel/gen_kheaders.sh b/kernel/gen_kheaders.sh
    index 34a1dc2..bfa0dd9 100755
    --- a/kernel/gen_kheaders.sh
    +++ b/kernel/gen_kheaders.sh
    @@ -44,4 +44,5 @@ all_dirs="$all_dirs $dir_list"
    -headers_md5="$(find $all_dirs -name "*.h"                  |
    -           grep -v "include/generated/compile.h"   |
    -           grep -v "include/generated/autoconf.h"  |
    -           xargs ls -l | md5sum | cut -d ' ' -f1)"
    +headers_md5="$(
    +           find $all_dirs -name "*.h" -printf '%p :: %Y:%l :: %s :: %T@\n' |
    +           grep -v "include/generated/compile.h" |
    +           grep -v "include/generated/autoconf.h" |
    +           sed 's/\.[0-9]\+$//' | LANG=C sort | md5sum | cut -d ' ' -f1)"
    @@ -50 +51 @@ headers_md5="$(find $all_dirs -name "*.h"                     |
    -this_file_md5="$(ls -l $sfile | md5sum | cut -d ' ' -f1)"
    +this_file_md5="$(md5sum $sfile | cut -d ' ' -f1)"
    EOF
    

    One funny thing there is an extra sed 's/\.[0-9]\+$//' to cut precision from find's %T@ timestamps, as some older filesystems (like reiserfs, which is still great for tiny-file performance and storage efficiency) don't support too high precision on these, and that will change them in this output without any complaints from e.g. rsync.

  • Host and time-dependent KBUILD_* variables.

    These embed build user/time/host etc, are relevant for reproducible builds, and maybe not so much here, but still best to lock down for consistency via e.g.:

    make KBUILD_BUILD_USER=user KBUILD_BUILD_HOST=host \
      KBUILD_BUILD_VERSION=b1 KBUILD_BUILD_TIMESTAMP=e1
    

    All these vars are documented under Documentation/ in the kernel tree.

  • Compiler toolchain must be roughly same between these machines.

    Not hard to do if they're both same Arch, but otherwise probably best way to get this is to have same distro(s) for the build within containers (e.g. nspawn).

This allows to rsync -rtlz the build tree from remote after "make" and do the usual "make install" or tweak it locally later without doing slow full rebuilds.

Apr 26, 2021

Mandatory consistency checksums in bsdtar archives

bsdtar from libarchive is the usual go-to tool for packing stuff up in linux scripts, but it always had an annoying quirk for me - no data checksums built into tar formats.

Ideally you'd unpack any .tar and if it's truncated/corrupted in any way, bsdtar will spot that and tell you, but that's often not what happens, for example:

% dd if=/dev/urandom of=file.orig bs=1M count=1

% cp -a file{.orig,} && bsdtar -czf file.tar.gz -- file
% bsdtar -xf file.tar.gz && b2sum -l96 file{.orig,}
2d6b00cfb0b8fc48d81a0545  file.orig
2d6b00cfb0b8fc48d81a0545  file

% python -c 'f=open("file.tar.gz", "r+b"); f.seek(512 * 2**10); f.write(b"\1\2\3")'
% bsdtar -xf file.tar.gz && b2sum -l96 file{.orig,}
2d6b00cfb0b8fc48d81a0545  file.orig
c9423358edc982ba8316639b  file

In a compressed multi-file archives such change can get tail of an archive corrupted-enough that it'd affect one of tarball headers, and those have checksums, so might be detected, but it's very unreliable, and won't affect uncompressed archives (e.g. media files backup which won't need compression).

Typical solution is to put e.g. .sha256 files next to archives and hope that people check those, but of course no one ever does in reality - bsdtar itself has to always do it implicitly for that kind of checking to stick, extra opt-in steps won't work. Putting checksum in the filename is a bit better, but still not useful for the same reason - almost no one will ever check it, unless it's automatic.

Luckily bsdtar has at least some safe options there, which I think should always be used by default, unless there's a good reason not to in some particular case:

  • bsdtar --xz (and its --lzma predecessor):

    % bsdtar -cf file.tar.xz --xz -- file
    % python -c 'f=open("file.tar.xz", "r+b"); f.seek(...); f.write(...)'
    
    % bsdtar -xf file.tar.xz && b2sum -l96 file{.orig,}
    file: Lzma library error: Corrupted input data
    
    % tar -xf file.tar.xz && b2sum -l96 file{.orig,}
    xz: (stdin): Compressed data is corrupt
    

    Heavier on resources than .gz and might be a bit less compatible, but given that even GNU tar supports it out of the box and much better compression (with faster decompression) in addition to mandatory checksumming, should always be a default for compressed archives.

    Lowering compression level might help a bit with performance as well.

  • bsdtar --format zip:

    % bsdtar -cf file.zip --format zip -- file
    % python -c 'f=open("file.zip", "r+b"); f.seek(...); f.write(...)'
    
    % bsdtar -xf file.zip && b2sum -l96 file{.orig,}
    file: ZIP bad CRC: 0x2c1170b7 should be 0xc3aeb29f
    

    Can be an OK option if there's no need for unixy file metadata, streaming decompression, and/or max compatibility is a plus, as good old zip should be readable everywhere.

    Simple deflate compression is inferior to .xz, so not the best for linux-only stuff or if compression is not needed, BUT there is --options zip:compression=store, which basically just adds CRC32 checksums.

  • bsdtar --use-compress-program zstd but NOT its built-in --zstd flag:

    % bsdtar -cf file.tar.zst --use-compress-program zstd -- file
    % python -c 'f=open("file.tar.zst", "r+b"); f.seek(...); f.write(...)'
    
    % bsdtar -xf file.tar.zst && b2sum -l96 file{.orig,}
    file: Lzma library error: Corrupted input data
    
    % tar -xf file.tar.zst && b2sum -l96 file{.orig,}
    file: Zstd decompression failed: Restored data doesn't match checksum
    

    Very fast and efficient, gains popularity quickly, but bsdtar --zstd flag will use libzstd defaults (using explicit zstd --no-check with binary too) and won't add checksums (!!!), even though it validates data against them on decompression.

    Still good alternative to above, as long as you pretend that --zstd option does not exist and always go with explicit zstd command instead.

    GNU tar does not seem to have this problem, as --zstd there always uses binary and its defaults (and -C/--check in particular).

  • bsdtar --lz4 --options lz4:block-checksum:

    % bsdtar -cf file.tar.lz4 --lz4 --options lz4:block-checksum -- file
    % python -c 'f=open("file.tar.lz4", "r+b"); f.seek(...); f.write(...)'
    
    % bsdtar -xf file.tar.lz4 && b2sum -l96 file{.orig,}
    bsdtar: Error opening archive: malformed lz4 data
    
    % tar -I lz4 -xf file.tar.lz4 && b2sum -l96 file{.orig,}
    Error 66 : Decompression error : ERROR_blockChecksum_invalid
    

    lz4 barely adds any compression resource overhead, so is essentially free, same for xxHash32 checksums there, so can be a safe replacement for uncompressed tar.

    bsdtar manpage says that lz4 should have stream checksum default-enabled, but it doesn't seem to help at all with corruption - only block-checksums like used here do.

    GNU tar doesn't understand lz4 by default, so requires explicit -I lz4.

  • bsdtar --bzip2 - actually checks integrity, but is very inefficient algo cpu-wise, so best to always avoid it in favor of --xz or zstd these days.

  • bsdtar --lzop - similar to lz4, somewhat less common, but always respects data consistency via adler32 checksums.

  • bsdtar --lrzip - opposite of --lzop above wrt compression, but even less-common/niche wrt install base and use-cases. Adds/checks md5 hashes by default.

It's still sad that tar can't have some post-data checksum headers, but always using one of these as a go-to option seem to mitigate that shortcoming, and these options seem to cover most common use-cases pretty well.

What DOES NOT provide consistency checks with bsdtar: -z/--gz, --zstd (not even when it's built without libzstd!), --lz4 without lz4:block-checksum option, base no-compression mode.

With -z/--gz being replaced by .zst everywhere, hopefully either libzstd changes its no-checksums default or bsdtar/libarchive might override it, though I wouldn't hold much hope for either of these, just gotta be careful with that particular mode.

Aug 28, 2020

YouTube feed parser, ewma and state logs

Recently Google stopped sending email notifications for YouTube subscription feeds, as apparently conversion of these to page views was 0.1% or something.

And even though I've used these to track updates exclusively, guess it's fair, as I also had xdg-open script jury-rigged to just open any youtube links in mpv instead of bothering with much inferior ad-ridden in-browser player.

One alternative workaround is to grab OPML of subscription Atom feeds and only use those from now on, converting these to familiar to-watch notification emails, which I kinda like for this purpose because they are persistent and have convenient state tracking (via read/unread and tags) and info text without the need to click through, collected in a dedicated mailbox dir.

Fetching/parsing feeds and sending emails are long-solved problems (feedparser in python does great job on former, MTAs on the latter), while check intervals and state tracking usually need to be custom, and can have a few tricks that I haven't seen used too widely.


Trick One - use moving average for an estimate of when events (feed updates) happen.

Some feeds can have daily activity, some have updates once per month, and checking both every couple hours would be incredibly wasteful to both client and server, yet it seem to be common practice in this type of scenario.

Obvious fix is to get some "average update interval" and space-out checks in time based on that, but using simple mean value ("sum / n") has significant drawbacks for this:

  • You have to keep a history of old timestamps/intervals to calculate it.
  • It treats recent intervals same as old ones, even though they are more relevant.

Weighted moving average value fixes both of these elegantly:

interval_ewma = w * last_interval + (1 - w) * interval_ewma

Where "w" is a weight for latest interval vs all previous ones, e.g. 0.3 to have new value be ~30% determined by last interval, ~30% of the remainder by pre-last, and so on.

Allows to keep only one "interval_ewma" float in state (for each individual feed) instead of a list of values needed for mean and works better for prediction due to higher weights for more recent values.

For checking feeds in particular, it can also be updated on "no new items" attempts, to have backoff interval increase (up to some max value), instead of using last interval ad infinitum, long past the point when it was relevant.

Trick Two - keep a state log.

Very useful thing for debugging automated stuff like this, where instead of keeping only last "feed last_timestamp interval_ewma ..." you append every new one to a log file.

When such log file grows to be too long (e.g. couple megs), rename it to .old and seed new one with last states for each distinct thing (feed) from there.

Add some timestamp and basic-info prefix before json-line there and it'd allow to trivially check when script was run, which feeds did it check, what change(s) it did detect there (affecting that state value), as well as e.g. easily remove last line for some feed to test-run processing last update there again.

When something goes wrong, this kind of log is invaluable, as not only you can re-trace what happened, but also repeat last state transition with e.g. some --debug option and see what exactly happened there.

Keeping only one last state instead doesn't allow for any of that, and you'd have to either keep separate log of operations for that anyway, and manually re-construct older state from there to retrace last script steps properly, tweak the inputs to re-construct state that way, or maybe just drop old state and hope that re-running script with latest inputs without it hits same bug(s).

I.e. there's basically no substitute for that, as text log is pretty much same thing, describing state changes in non-machine-readable and often-incomplete text, which can be added to such state-log instead as an extra metadata anyway.

With youtube-rss-tracker script with multiple feeds, it's a single log file, storing mostly-json lines like these (wrapped for readability):

2020-08-28 05:59 :: UC2C_jShtL725hvbm1arSV9w 'CGP Grey' ::
  {"chan": "UC2C_jShtL725hvbm1arSV9w", "delay_ewma": 400150.7167069313,
    "ts_last_check": 1598576342.064458, "last_entry_id": "FUV-dyMpi8K_"}
2020-08-28 05:59 :: UCUcyEsEjhPEDf69RRVhRh4A 'The Great War' ::
  {"chan": "UCUcyEsEjhPEDf69RRVhRh4A", "delay_ewma": 398816.38761319243,
    "ts_last_check": 1598576342.064458, "last_entry_id": "UGomntKCjFJL"}

Text prefix there is useful when reading the log, while script itself only cares about json bit after that.

Anything doesn't work well - notifications missing, formatted badly, errors, etc - you just remove last state and tweak/re-run the script (maybe in --dry-run mode too), and get pretty much exactly same thing as happened last, aside from any input (feed) changes, which should be very predictable in this particular case.

Not sure what this concept is called in CS, there gotta be some fancy name for it.


Link to YouTube feed email-notification script used as an example here:

Jun 26, 2020

Network interface SNMP traffic counters for accounting in Prometheus and Grafana

Usual and useful way to represent traffic counters for accounting purposes like "how much inbound/outbound traffic passed thru within specific day/month/year?" are bar charts or tables I think, i.e. something like this:

Interface traffic counters for accounting purposes

With one bar or table entry there for each day, month or year (accounting periods).

Counter values in general are not special in prometheus, so grafana builds the usual monotonic-line graphs for these by default, which are not very useful.

Results of prometheus query like increase(iface_traffic_bytes_total[1d]) are also confusing, as it returns arbitrary sliding windows, with points that don't correspond to any fixed accounting periods.

But grafana is not picky about its data sources, so it's easy to query prometheus and re-aggregate (and maybe cache) data as necessary, e.g. via its "Simple JSON" datasource plugin.

To get all historical data, it's useful to go back to when metric first appeared, and official prometheus clients add "_created" metric for counters, which can be queried for min value to get (slightly pre-) earliest value timestamp, for example min_over_time(iface_traffic_bytes_created[10y]).

From there, value for each bar will be diffs between min/max for each accounting interval, that can be queried naively via min_over_time + max_over_time (like created-time above), but if exporter is written smartly or persistent 64-bit counters are used (e.g. SNMP IF-MIB::ifXEntry), these lookups can be simplified a lot by just querying min/max values at the start and end of the period, instead of having prometheus do full sweep, which can be especially bad on something like a year of datapoints.

Such optimization can potentially return no values, if data at that interval start/end was missing, but that's easy to work around by expanding lookup range until something is returned.

Deltas between resulting max/min values are easy to dump as JSON for bar chart or table in response to grafana HTTP requests.

Had to implement this as a prometheus-grafana-simplejson-aggregator py3 script (no deps), which runs either on timer to query/aggregate latest data from prometheus (to sqlite), or as a uWSGI app which can be queried anytime from grafana.

Also needed to collect/export data into prometheus over SNMP for that, so related script is prometheus-snmp-iface-counters-exporter for SNMPv3 IF-MIB/hrSystemUptime queries (using pysnmp), exporting counters via prometheus client module.

(note - you'd probably want to check and increase retention period in prometheus for data like that, as it defaults to dropping datapoints older than a month)

I think aggregation for such accounting use-case can be easily implemented in either prometheus or grafana, with a special fixed-intervals query type in the former or more clever queries like described above in the latter, but found that both seem to explicitly reject such use-case as "not supported". Oh well.

Code links (see README in the repo and -h/--help for usage info):

Jun 21, 2020

File tagging outside of fs hierarchies and db for tags

File tagging is one useful concept that stuck with me since I started using tmsu and made a codetag tool a while ago to auto-add tags to local files.

For example, with code, you'd usually have code files and whatever assets arranged in some kind of project trees, with one dir per project and all files related to it in git repo under that.

But then when you work on something unrelated and remember "oh, I did implement or seen this already somewhere", there's no easy and quick "grep all python files" option with such hierarchy, as finding all of them on the whole fs tends to take a while, or too long for a quick check anyway to not be distracting.

And on top of that filesystem generally only provides filenames as metadata, while e.g. script shebangs or file magic are not considered, so "filetag" python script won't even be detected when naively grepping all *.py files.

Easy and sufficient fix that I've found for that is to have cronjob/timer to go over files in all useful non-generic fs locations and build a db for later querying, which is what codetag and tmsu did for years.

But I've never came to like golang in any way (would highly recommend checking out OCAML instead), and tmsu never worked well for my purposes - was slow to interface with, took a lot of time to build db, even longer to check and clean it up, while quierying interface was clunky and lackluster (long commands, no NUL-separated output, gone files in output, etc).

So couple months ago found time to just rewrite all that in one python script - filetag - which does all codetag + tmsu magic in something like 100 lines of actual code, faster, and doesn't have shortcomings of the old tools.

Was initially expecting to use sqlite there, but then realized that I only index/lookup stuff by tags, so key-value db should suffice, and it won't actually need to be updated either, only rebuilt from scratch on each indexing, so used simple gdbm at first.

Didn't want to store many duplicates of byte-strings there however, so split keys into three namespaces and stored unique paths and tags as numeric indexes, which can be looked-up in the same db, which ended up looking like this:

"\0" "tag_bits" = tag1 "\0" tag2 ...
"\1" path-index-1 = path-1
"\1" path-index-2 = path-2
...
"\2" tag-index-1 = path-index-1 path-index-2 ...
"\2" tag-index-2 = path-index-1 path-index-2 ...
...

So db lookup loads "tag_bits" value, finds all specified tag-indexes there (encoded using minimal number of bytes), then looks up each one, getting a set of path indexes for each tag (uint64 numbers).

If any logic have to be applied on such lookup, i.e. "want these tags or these, but not those", it can be compiled into DNF "OR of bitmasks" list, which is then checked against each tag-bits of path-index superset, doing the filtering.

Resulting paths are looked up by their index and printed out.

Looks pretty minimal and efficient, nothing is really duplicated, right?

In RDBMS like sqlite, I'd probably store this as a simple tag + path table, with index on the "tag" field and have it compress that as necessary.

Well, running filetag on my source/projects dirs in ~ gets 100M gdbm file with schema described above and 2.8M sqlite db with such simple schema.

Massive difference seem to be due to sqlite compressing such repetitive and sometimes-ascii data and just being generally very clever and efficient.

Compressing gdbm file with zstd gets 1.5M too, i.e. down to 1.5% - impressive!
And it's not mostly-empty file, aside from all those zero-bytes in uint64 indexes.

Anyhow, point and my take-away here was, once again - "just use sqlite where possible, and don't bother with other local storages".

It's fast, efficient, always available, very reliable, easy to use, and covers a ton of use-cases, working great for all of them, even when they look too simple for it, like the one above.

One less-obvious aspect from the list above, which I've bumped into many times myself, and probably even mentioned on this blog already, is "very reliable" - dbm modules and many other "simple" databases have all sorts of poorly-documented failure modes, corrupting db and loosing data where sqlite always "just works".

Wanted to document this interesting fail here mostly to reinforce the notion in my own head once more. sqlite is really awesome, basically :)

Jun 02, 2020

Simple testing for DNS resolver operation

After replacing DNS resolver daemons a bunch of weeks ago in couple places, found the hard way that nothing is quite as reliable as (t)rusty dnscache from djbdns, which is sadly too venerable and lacks some essential features at this point.

Complex things like systemd-resolved and unbound either crash, hang or just start dropping all requests silently for no clear reason (happens outside of conditions described in that email as well, to this day).

But whatever, such basic service as name resolver needs some kind of watchdog anyway, and seem to be easy to test too - delegate some subdomain to a script (NS entry + glue record) which would give predictable responses to arbitrary queries and make/check those.

Implemented both sides of that testing process in dns-test-daemon script, which can be run with some hash-key for BLAKE2S HMAC:

% ./dns-test-daemon -k hash-key -b 127.0.0.1:5533 &
% dig -p5533 @127.0.0.1 aaaa test.com
...
test.com. 300 IN AAAA eb5:7823:f2d2:2ed2:ba27:dd79:a33e:f762
...

And then query it like above, getting back first bytes of keyed name hash after inet_ntop conversion as a response address.

Good thing about it is that name can be something random like "o3rrgbs4vxrs.test.mydomain.com", to force DNS resolver to actually do its job and not just keep returning same "google.com" from the cache or something. And do it correctly too, as otherwise resulting hash won't match expected value.

So same script has client mode to use same key and do the checking, as well as randomizing queried names:

% dns-test-daemon -k hash-key --debug @.test.mydomain.com

(optionally in a loop too, with interval/retries/timeout opts, and checking general network availability via fping to avoid any false alarms due to that)

Ended up running this tester/hack to restart unbound occasionally when it craps itself, which restored reliable DNS operation for me, essential thing for any outbound network access, pretty big deal.

May 09, 2020

Desktop background / wallpaper setter image processing pipeline

One of my weird hobbies have always been collecting "personal favorite" images from places like DeviantArt or ArtStation for desktop backgrounds.

And thing about arbitrary art is that they never fit any kind of monitor resolution - some images are tall, others are wide, all have to be scaled, etc - and that processing has to be done somewhere.

Most WMs/DEs seem to be cropping largest aspect-correct rectangle from the center of the image and scaling that, which doesn't work well for tall images on wide displays and generally can be improved upon.

Used my aura project for that across ~10 years, which did a lot of custom processing using GIMP plugin, as it was the only common image-processing thing supporting seam carving (or liquid rescale / lqr) algo at the time (around 2011) for neat content-aware image resizing.

It always worked fairly slowly, mostly due to GIMP startup times and various inefficiencies in the process there, and by now it is also heavily deprecated due to using Python2 (which is no longer supported in any way past April 2020), as well as GIMP's Python-Fu API, which will probably also be gone in GIMP 3.0+ (with its migration to gobject-introspection bindings).

Wanted to document how it was working somewhere for myself, which was useful for fgbg rewrite (see below), and maybe it might be useful to cherry-pick ideas from to someone else who'd randomly stumble upon this list :)

Tool was doing roughly this:

  • aura.sh script running as a daemon, with some wakeup interval to update backgrounds.

    • Most details of the process were configurable in ~/.aurarc.

    • xprintidle was used to check if desktop is idle - no need to change backgrounds if so.

    • Number of displays to run lqr_wpset.py for was checked via xrandr cli tool.

    • Image was picked mostly-randomly, but with bias towards "favorites" and ignoring blacklisted ones.

      Both faves and blacklist was supported and updated via cli options (-f/--fave and -b/--blacklist), allowing to easily set "like" or "never use again" status for current image, with lists of these stored in ~/.aura.

      Haven't found much use for these honestly - all images work great with proper processing, and there seem to be little use in limiting their variety that way.

    • GIMP was run in batch mode and parameters passed via env, using lqr_wpset.py plugin to either set background on specified display or print some "WPS-ERR:" string to pick some other image (on errors or some sanity-checks failing there).

    • Image picks and all GIMP output were stored in ~/.aura/picker.log (overridable via aurarc, same as most other params), with a special file for storing just currently-used image source path(s).

    • Command-line options to wake up daemon via signal or print currently-used image source were also supported and quite useful.

  • Actual heavy-lifting was done in lqr_wpset.py GIMP plugin, which handled image processing, some caching to speed things up when re-using same source image, as well as actual background-setting.

    Uses old dbus and pygtk modules to set background in various DEs at the last step.

    • Solid-color edges are stripped from the image - e.g. black stripes on the top/bottom - to get actual image size and contents to use.

      This is done by making a "mask" layer from image, which gets blurred and then contrast-adjusted to average-out any minor color fluctuations in these edges, and then cropped by gimp to remove them.

      Resulting size/position of cropped remains of that "mask" is then used to crop relevant part out of the original image.

    • 50% random chance to flip image horizontally for more visual variety.

      Given that parts of my desktop background are occluded by conky and terminals, this is actually very useful, as it will show diff parts of same image(s) from under these.

      Only works weirdly with text on images, which is unreadable when mirrored, but that's very rare and definitely not a big deal, as it's often there for signage and such, not for actual reading.

    • If image is way too large or small - e.g. 6x diff by area or 3x diff by width/height, abort processing, as it'll be either too expensive cpu-wise or won't get nice result anyway (for tiny images).

    • If image aspect is too tall compared to display's - scale it smartly to one side of the screen.

      This is somewhat specific to my use-case, as my most used virtual desktop is #1 with transparent conky system-monitor on the left and terminal window on the right.

      So background shows through on the left there, and tall images can easily fill that space, but "gravity" value can be configured in the script to position such image anywhere horizontally (0-100, default - 25 for "center at 25% left-to-right").

      Processing in this case is a bit complicated:

      • Render specified bg color (if any) on display-sized canvas, e.g. just black.

      • Scale/position image in there using specified "gravity" value as center point, or against left/right side, if it'd go beyond these.

      • Pick specified number of "edge" pixels (e.g. 25px) on left/right sides of the image, which aren't bumping into canvas edge, and on a layer in-between solid-color background (first step) and scaled/positioned image, do:

        • Scale this edge to fill rest of the canvas in empty direction.
        • Blur result a lot, so it'd look vague and indistinct, like background noise.
        • Use some non-100% opacity for it, something like 70%, to blend-in with bg color.

        This would produce a kind of "blurred halo" stretching from tall image sides, and filling otherwise-empty parts of canvas very nicely.

      • Gradient-blend above "edge" pixels with produced stretched/blurred background.

      Arrived at this process after some experimentation, I think something like that with scaling and blur is common way to make fitting bg underlay for sharp centered images in e.g. documentaries and such.

    • If image is at least 30% larger by area, scale it preserving aspect with the regular "cubic" algo.

      This turns out to be very important pre-processing step for LQR scaling later - on huge source images, such scaling can take many minutes, e.g. when scaling 4k image to 1080p.

      And also - while this tool didn't do that (fixed later in fgbg script) - it's also important to scale ALL images as close to final resolution as possible, so that seam carving algo will add as little distortion as possible.

      Generally you want LQR to do as little work as possible, if other non-distorting options are available, like this aspect-scaling option.

    • Run seam carving / lqr algo to match image aspect to display size exactly.

      Look it up on e.g. wikipedia or youtube if you've never seen it - a very cool and useful algorithm.

    • Cache produced result, to restart from this step when using same source image and h-flip-chance next time.

      Text added on top in the next step can vary with current date/time, so intermediate result is cached here.

      This helps a lot with performance, obviously.

    • Add text plaque in the image corner with its filename, timestamps and/or some tag metadata.

      This is mostly useful when proper image titles stored in EXIF tags, as well as creation time/place for photos.

      Metadata from exiv2 (used via pyexiv2) has a ton of various keys for same things, so script does its best to include ~20 potential keys for each useful field like "author", "creation date" or "title".

      Font used to be rendered in a contrasting color, picked via L*a*b* colorspace against "averaged" background color (via blur or such).

      This produced too wild and still bad results on busy backgrounds, so eventually switched to a simpler and better "light text with dark outline" option.

      Outline is technically rendered as a "glow" - a soft gradient shadow (solid dark color to full trasparency) expanding in all directions from font outline.

    • Try all known background-setting options, skipping expected errors, as most won't work with one specific DE running.

      Can ideally be configured via env (from ~/.aurarc) to skip unnecessary work here, but they all are generally easy/quick to try anyway.

      • GNOME/Unity - gsettings set org.gnome.desktop.background picture-uri file://... command.

      • Older GNOME/XFCE - use "gconf" python module to set "/desktop/gnome/background/picture_filename" path.

      • XFCE - set via DBus call to /org/xfce/Xfconf [org.xfce.Xfconf].

        Has multiple different props to set there.

      • Enlightenment (E17+) - DBus calls to /org/enlightenment/wm/RemoteObject [org.enlightenment.wm.service].

        Can have many images there, for each virtual desktop and such.

      • Paint X root window via pygtk!

        This works for many ancient window managers, and is still showing through in some DEs too, occasionally.

      Collected and added these bg-setting steps via experiments with different WMs/DEs over the years, and it's definitely nowhere near exhaustive list.

      These days there might be some more uniform way to do it, especially with wayland compositors.

At some point, mostly due to everything in this old tool being deprecated out of existance, did a full rewrite with all steps above in some form, as well as major improvements, in the form of modern fgbg script (in mk-fg/de-setup repo).

It uses ImageMagick and python3 Wand module, which also support LQR and all these relatively-complex image manipulations these days, but work few orders of magnitude faster than old "headless GIMP" for such automated processing purpose.

New script is much less complicated, as well as self-contained daemon, with only optional extra wand-py and xprintidle (see above) dependencies (when e.g. image processing is enabled via -p/--process option).

Also does few things more and better, drawing all lessions from that old aura project, which can finally be scrapped, I guess.

Actually, one missing bit there atm (2020-05-09) is various background-setting methods from different DEs, as I've only used it with Enlightement so far, where it can set multiple background images in configurable ways via DBus (using xrandr and sd-bus lib from systemd via ctypes).

Should be relatively trivial to support more DEs there by adding specific commands for these, working more-or-less same as in the old script (and maybe just copying methods from there), but these just need to be tested, as my limited knowledge of interfaces in all these DEs is probably not up to date.

Jan 03, 2020

Dynamic blacklisting configuration for nginx access via custom module

This is a fix for a common "bots hammering on all doors on the internet" issue, applied in this case to nginx http daemon, where random bots keep creating bunch of pointless server load by indexing or requesing stuff that they never should bother with.

Example can be large dump of static files like distro packages mirror or any kind of dynamic content prohibited by robots.txt, which nice bots tend to respect, but dumb and malicious bots keep scraping over and over again without any limits or restraint.

One way of blocking such pointless busywork-activity is to process access_log and block IPs via ipsets, nftables sets or such, but this approach blocks ALL content on http/https port instead of just hosts and URLs where such bots have no need to be.

So ideally you'd have something like ipsets in nginx itself, blocking only "not for bots" locations, and it actually does have that, but paywalled behind Nginx Plus subscription (premium version) in keyval module, where dynamic blacklist can be updated in-memory via JSON API.

Thinking about how to reimplement this as a custom module for myself, in some dead-simple and efficient way, thought of this nginx.conf hack:

try_files /some/block-dir/$remote_addr @backend;

This will have nginx try to serve templated /some/block-dir/$remote_addr file path, or go to @backend location if it doesn't exists.

But if it does exist, yet can't be accessed due to filesystem permissions, nginx will faithfully return "403 Forbidden", which is pretty much the desired result for me.

Except this is hard to get working with autoindex module (i.e. have nginx listing static filesystem directories), looks up paths relative to root/alias dirs, has ton of other limitations, and is a bit clunky and non-obvious.

So, in the same spirit, implemented "stat_check" command via nginx-stat-check module:

load_module /usr/lib/nginx/modules/ngx_http_stat_check.so;
...
location /my-files {
  alias /srv/www/my-files;
  autoindex on;
  stat_check /tmp/blacklist/$remote_addr;
}

This check runs handler on NGX_HTTP_ACCESS_PHASE that either returns NGX_OK or NGX_HTTP_FORBIDDEN, latter resulting in 403 error (which can be further handled in config, e.g. via custom error page).

Check itself is what it says on the tin - very simple and liteweight stat() call, checking if specified path exists, and - as it is for blacklisting - returning http 403 status code if it does when accessing that location block.

This also allows to use any of the vast number of nginx variables, including those matched by regexps (e.g. from location URL), mapped via "map", provided by modules like bundled realip, geoip, ssl and such, any third-party ones or assembled via "set" directive, i.e. good for use with pretty much any parameter known to nginx.

stat() looks up entry in a memory-cached B-tree or hash table dentry list (depends on filesystem), with only a single syscall and minimal overhead possible for such operation, except for maybe pure in-nginx-memory lookups, so might even be better solution for persistent blacklists than keyval module.

Custom dynamic nginx module .so is very easy to build, see "Build / install" section of README in the repo for exact commands.

Also wrote corresponding nginx-access-log-stat-block script that maintains such filesystem-database blacklist from access.log-like file (only cares about remote_addr being first field there), produced for some honeypot URL, e.g. via:

log_format stat-block '$remote_addr';

location = /distro/package/mirror/open-and-get-banned.txt {
  alias /srv/pkg-mirror/open-and-get-banned.txt;
  access_log /run/nginx/bots.log stat-block;
}

Add corresponding stat_check for dir that script maintains in "location" blocks where it's needed and done.

tmpfs (e.g. at /tmp or /run) can be used to keep such block-list completely in memory, or otherwise I'd recommend using good old ReiserFS (3.6 one that's in mainline linux) with tail packing, which is enabled by default there, as it's incredibly efficient with large number of small files and lookups for them.

Files created by nginx-access-log-stat-block contain blocking timestamp and duration (which are used to unblock addresses after --block-timeout), and are only 24B in size, so ReiserFS should pack these right into inodes (file metadata structure) instead of allocating extents and such (as e.g. ext4 would do), being pretty much as efficient for such data as any disk-backed format can possibly be.

Note that if you're reading this post in some future, aforementioned premium "keyval" module might be already merged into plebeian open-source nginx release, allowing on-the-fly highly-dynamic configuration from external tools out of the box, and is probably good enough option for this purpose, if that's the case.

Jan 03, 2020

Editor/code font legibility hacks

Doesn't seem to be a common thing to pay attention to outside of graphic/UI/UX design world, but if you stare at the code for significant chunk of the day, it's a good thing to customize/optimize at least a bit.

I've always used var-width fonts for code in emacs, and like them vs monospace ones for general readability and being much more compact, but noticed one major shortcoming over the years: some punctuation marks are very hard to tell apart.

While this is not an issue in free-form text, where you don't care much whether some tiny dot is a comma or period, it's essential to differentiate these in code.

And in fonts which I tend to use (like Luxi Sans or Liberation Sans), "." and "," in particular tend to differ by something like 1-2 on-screen pixels, which is bad, as I've noticed straining to distinguish the two sometimes, or putting one instead of another via typo and not noticing, because it's hard to notice.

It's a kind of thing that's like a thorn that always torments, but easy to fix once you identify it as a problem and actually look into it.

Emacs in particular allows to replace one char with another visually:

(unless standard-display-table
  (setq standard-display-table (make-display-table)))
(aset standard-display-table ?, (vconcat "˾"))
(aset standard-display-table ?. (vconcat "❟"))

Most fonts have ton of never-used-in-code unicode chars to choose distinctive replacements from, which are easy to browse via gucharmap or such.

One problem can be emacs using faces with different font somewhere after such replacement, which might not have these chars in them, so will garble these, but that's rare and also easy to fix (via e.g. custom-set-faces).

Another notable (original) use of this trick - "visual tabs":

(aset standard-display-table ?\t (vconcat "˙ "))

I.e. marking each "tab" character by a small dot, which helps a lot with telling apart indentation levels, esp. in langs like python where it matters just as much as commas vs periods.

Recently also wanted to extend this to colons and semicolons, which are just as hard to tell apart as these dots (: vs ;), but replacing them with something weird everywhere seem to be more jarring, and there's a proper fix for all of these issues - edit the glyphs in the font directly.

fontforge is a common app for that, and for same-component ".:,;" chars there's an easy way to scale them, copy-paste parts between glyphs, positioning them precisely at the same levels.

Scaling outlines by e.g. 200% makes it easy to tell them apart by itself, but I've also found it useful to make a dot slightly horizontally stretched, while leaving comma vertical - eye immediately latches onto this distinction, unlike with just "dot" vs "dot plus a tiny beard".

It's definitely less of an issue in monospace fonts, and there seem to be a large selection of "coding fonts" optimized for legibility, but still worth remembering that glyphs in these are not immutable at all - you're not stuck with whatever aesthetics-vs-legibility trade-offs their creators made for all chars, and can easily customize them according to your own issues and needs, same as with editor, shell/terminal, browser or desktop environemnt.

← Previous Next → Page 3 of 16