Mar 21, 2017

Running glusterfs in a user namespace (uid-mapped container)

Traditionally glusterd (glusterfs storage node) runs as root without any kind of namespacing, and that's suboptimal for two main reasons:

  • Grossly-elevated privileges (it's root) for just using net and storing files.
  • Inconvenient to manage in the root fs/namespace.

Apart from being historical thing, glusterd uses privileges for three things that I know of:

  • Set appropriate uid/gid on stored files.
  • setxattr() with "trusted" namespace for all kinds of glusterfs xattrs.
  • Maybe running nfsd? Not sure about this one, didn't use its nfs access.

For my purposes, only first two are useful, and both can be easily satisfied in non-uid-mapped contained, e.g. systemd-nspawn without -U.

With user_namespaces(7), first requirement is also satisfied, as chown works for pseudo-root user inside namespace, but second one will never work without some kind of namespace-private fs or xattr-mapping namespace.

"user" xattr namespace works fine there though, so rather obvious fix is to make glusterd use those instead, and it has no obvious downsides, at least if backing fs is used only by glusterd.

xattr names are unfortunately used quite liberally in the gluster codebase, and don't have any macro for prefix, but finding all "trusted" outside of tests/docs with grep is rather easy, seem to be no caveats there either.

Would be cool to see something like that upstream eventually.

It won't work unless all nodes are using patched glusterfs version though, as non-patched nodes will be sending SETXATTR/XATTROP for trusted.* xattrs.

Two extra scripts that can be useful with this patch and existing setups:

First one is to copy trusted.* xattrs to user.*, and second one to set upper 16 bits of uid/gid to systemd-nspawn container id value.

Both allow to pass fs from old root glusterd to a user-xattr-patched glusterd inside uid-mapped container (i.e. bind-mount it there), without loosing anything. Both operations are also reversible - can just nuke user.* stuff or upper part of uid/gid values to revert everything back.

One more random bit of ad-hoc trivia - use getfattr -Rd -m '.*' /srv/glusterfs-stuff
(getfattr without -m '.*' hack hides trusted.* xattrs)

Note that I didn't test this trick extensively (yet?), and only use simple distribute-replicate configuration here anyway, so probably a bad idea to run something like this blindly in an important and complicated production setup.

Also wow, it's been 7 years since I've written here about glusterfs last, time (is made of) flies :)

Feb 13, 2017

Xorg input driver - the easy way, via evdev and uinput

Got to reading short stories in Column Reader from laptop screen before sleep recently, and for an extra-lazy points, don't want to drag my hand to keyboard to flip pages (or columns, as the case might be).

Easy fix - get any input device and bind stuff there to keys you'd normally use.
As it happens, had Xbox 360 controller around for that.

Hard part is figuring out how to properly do it all in Xorg - need to build xf86-input-joystick first (somehow not in Arch core), then figure out how to make it act like a dumb event source, not some mouse emulator, and then stuff like xev and xbindkeys will probably help.

This is way more complicated than it needs to be, and gets even more so when you factor-in all the Xorg driver quirks, xev's somewhat cryptic nature (modifier maps, keysyms, etc), fact that xbindkeys can't actually do "press key" actions (have to use stuff like xdotool for that), etc.

All the while reading these events from linux itself is as trivial as evtest /dev/input/event11 (or for event in dev.read_loop(): ...) and sending them back is just ui.write(e.EV_KEY, e.BTN_RIGHT, 1) via uinput device.

Hence whole binding thing can be done by a tiny python loop that'd read events from whatever specified evdev and write corresponding (desired) keys to uinput.

So instead of +1 pre-naptime story, hacked together a script to do just that - evdev-to-xev (python3/asyncio) - which reads mappings from simple YAML and runs the loop.

For example, to bind right joystick's (on the same XBox 360 controller) extreme positions to cursor keys, plus triggers, d-pad and bumper buttons there:

map:

  ## Right stick
  # Extreme positions are ~32_768
  ABS_RX <-30_000: left
  ABS_RX >30_000: right
  ABS_RY <-30_000: up
  ABS_RY >30_000: down

  ## Triggers
  # 0 (idle) to 255 (fully pressed)
  ABS_Z >200: left
  ABS_RZ >200: right

  ## D-pad
  ABS_HAT0Y -1: leftctrl leftshift equal
  ABS_HAT0Y 1: leftctrl minus
  ABS_HAT0X -1: pageup
  ABS_HAT0X 1: pagedown

  ## Bumpers
  BTN_TL 1: [h,e,l,l,o,space,w,o,r,l,d,enter]
  BTN_TR 1: right

timings:
  hold: 0.02
  delay: 0.02
  repeat: 0.5
Run with e.g.: evdev-to-xev -c xbox-scroller.yaml /dev/input/event11
(see also less /proc/bus/input/devices and evtest /dev/input/event11).
Running the thing with no config will print example one with comments/descriptions.

Given how all iterations of X had to work with whatever input they had at the time, plus not just on linux, even when evdev was around, hard to blame it for having a bit of complexity on top of way simplier input layer underneath.

In linux, aforementioned Xbox 360 gamepad is supported by "xpad" module (so that you'd get evdev node for it), and /dev/uinput for simulating arbitrary evdev stuff is "uinput" module.

Script itself needs python3 and python-evdev, plus evtest can be useful.
No need for any extra Xorg drivers beyond standard evdev.

Most similar tool to such script seem to be actkbd, though afaict, one'd still need to run xdotool from it to simulate input :O=

Github link: evdev-to-xev script (in the usual mk-fg/fgtk scrap-heap)

Feb 06, 2017

nftables dnat from loopback to somewhere else

Honestly didn't think NAT'ing traffic from "lo" interface was even possible, because traffic to host's own IP doesn't go through *ROUTING chains with iptables, and never used "-j DNAT" with OUTPUT, which apparently works there as well.

And then also, according to e.g. Netfilter-packet-flow.svg, unlike with nat-prerouting, nat-output goes after routing decision was made, so no point mangling IPs there, right?

Wrong, totally possible to redirect "OUT=lo" stuff to go out of e.g. "eth0" with the usual dnat/snat, with something like this:

table ip nat {
  chain in { type nat hook input priority -160; }
  chain out { type nat hook output priority -160; }
  chain pre { type nat hook prerouting priority -90; }
  chain post { type nat hook postrouting priority 110; }
}

add rule ip nat out oifname lo \
  ip saddr $own-ip ip daddr $own-ip \
  tcp dport {80, 443} dnat $somehost
add rule ip nat post oifname eth0 \
  ip saddr $own-ip ip daddr $somehost \
  tcp dport {80, 443} masquerade

Note the bizarre oifname lo ip saddr $own-ip ip daddr $own-ip thing.

One weird quirk - if "in" (arbitrary name, nat+input hook is the important bit) chain isn't defined, dnat will only work one-way, not rewriting IPs in response packets.

One explaination wrt routing decision here might be arbitrary priorities that nftables allows to set for hooks (and -160 is before iptables mangle stuff).

So, from-loopback-and-back forwarding, huh.
To think of all the redundant socats and haproxies I've seen and used for this purpose earlier...

Jan 29, 2017

Proxying ssh user connections to gitolite host transparently

Recently bumped into apparently not well-supported scenario of accessing gitolite instance transparently on a host that is only accessible through some other gateway (often called "bastion" in ssh context) host.

Something like this:

+---------------+
|               |   git@myhost.net:myrepo
|  dev-machine  ---------------------------+
|               |                          |
+---------------+                          |
                              +------------v------+
      git@gitolite:myrepo     |                   |
  +----------------------------  myhost.net (gw)  |
  |                           |                   |
+-v-------------------+       +-------------------+
|                     |
|    gitolite (gl)    |
|  host/container/vm  |
|                     |
+---------------------+

Here gitolite instance might be running on a separate machine, or on the same "myhost.net", but inside a container or vm with separate sshd daemon.

From any dev-machine you want to simply use git@myhost.net:myrepo to access repositories, but naturally that won't work because in normal configuration you'd hit sshd on gw host (myhost.net) and not on gl host.

There are quite a few common options to work around this:

  • Use separate public host/IP for gitolite, e.g. git.myhost.net (!= myhost.net).

  • TCP port forwarding or similar tricks.

    E.g. simply forward ssh port connections in a "gw:22 -> gl:22" fashion, and have gw-specific sshd listen on some other port, if necessary.

    This can be fairly easy to use with something like this for odd-port sshd in ~/.ssh/config:

    Host myhost.net
      Port 1234
    Host git.myhost.net
      Port 1235
    

    Can also be configured in git via remote urls like ssh://git@myhost.net:1235/myrepo.

  • Use ssh port forwarding to essentially do same thing as above, but with resulting git port accessible on localhost.

  • Configure ssh to use ProxyCommand, which will login to gw host and setup forwarding through it.

All of these, while suitable for some scenarios, are still nowhere near what I'd call "transparent", and require some additional configuration for each git client beyond just git add remote origin git@myhost.net:myrepo.

One advantage of such lower-level forwarding is that ssh authentication to gitolite is only handled on gitolite host, gw host has no clue about that.

If dropping this is not a big deal (e.g. because gw host has root access to everything in gl container anyway), there is a rather easy way to forward only git@myhost.net connections from gw to gl host, authenticating them only on gw instead, described below.


Gitolite works by building ~/.ssh/authorized_keys file with essentially command="gitolite-shell gl-key-id" <gl-key> for each public key pushed to gitolite-admin repository.

Hence to proxy connections from gw, similar key-list should be available there, with key-commands ssh'ing into gitolite user/host and running above commands there (with original git commands also passed through SSH_ORIGINAL_COMMAND env-var).

To keep such list up-to-date, post-update trigger/hook for gitolite-admin repo is needed, which can use same git@gw login (with special "gl auth admin" key) to update key-list on gw host.

Steps to implement/deploy whole thing:

  • useradd -m git on gw and run ssh-keygen -t ed25519 on both gw and gl hosts for git/gitolite user.

  • Setup all connections for git@gw to be processed via single "gitolite proxy" command, disallowing anything else, exactly like gitolite does for its users on gl host.

    gitolite-proxy.py script (python3) that I came up with for this purpose can be found here: https://github.com/mk-fg/gitolite-ssh-user-proxy/

    It's rather simple and does two things:

    • When run with --auth-update argument, receives gitolite authorized_keys list, and builds local ~/.ssh/authorized_keys from it and authorized_keys.base file.

    • Similar to gitolite-shell, when run as gitolite-proxy key-id, ssh'es into gl host, passing key-id and git command to it.

      This is done in a straightforward os.execlp('ssh', 'ssh', '-qT', ...) manner, no extra processing or any error-prone stuff like that.

    When installing it (to e.g. /usr/local/bin/gitolite-proxy as used below), be sure to set/update "gl_host_login = ..." line at the top there.

    For --auth-update, ~/.ssh/authorized_keys.base (note .base) file on gw should have this single line (split over two lines for readability, must be all on one line for ssh!):

    command="/usr/local/bin/gitolite-proxy --auth-update",no-port-forwarding
      ,no-X11-forwarding,no-agent-forwarding,no-pty ssh-ed25519 AAA...4u3FI git@gl
    

    Here ssh-ed25519 AAA...4u3FI git@gl is the key from ~git/.ssh/id_ed25519.pub on gitolite host.

    Also run:

    # install -m0600 -o git -g git ~git/.ssh/authorized_keys{.base,}
    # install -m0600 -o git -g git ~git/.ssh/authorized_keys{.base,.old}
    
    To have initial auth-file, not yet populated with gitolite-specific keys/commands.
    Note that only these two files need to be writable for git user on gw host.
  • From gitolite (gl) host and user, run: ssh -qT git@gw < ~/.ssh/authorized_keys

    This is to test gitolite-proxy setup above - should populate ~git/.ssh/authorized_keys on gw host and print back gw host key and proxy script to run as command="..." for it (ignore them, will be installed by trigger).

  • Add trigger that'd run after gitolite-admin repository updates on gl host.

    • On gl host, put this to ~git/.gitolite.rc right before ENABLE line:

      LOCAL_CODE => "$rc{GL_ADMIN_BASE}/local",
      POST_COMPILE => ['push-authkeys'],
      
    • Commit/push push-authkeys trigger script (also from gitolite-ssh-user-proxy repo) to gitolite-admin repo as local/triggers/push-authkeys, updating gw_proxy_login line in there.

    gitolite docs on adding triggers: http://gitolite.com/gitolite/gitolite.html#triggers

Once proxy-command is in place on gw and gitolite-admin hook runs at least once (to setup gw->gl access and proxy-command), git@gw (git@myhost.net) ssh login spec can be used in exactly same way as git@gl.

That is, fully transparent access to gitolite on a different host through that one user, while otherwise allowing to use sshd on a gw host, without any forwarding tricks necessary for git clients.

Whole project, with maybe a bit more refined process description and/or whatever fixes can be found on github here: https://github.com/mk-fg/gitolite-ssh-user-proxy/

Huge thanks to sitaramc (gitolite author) for suggesting how to best setup gitolite triggers for this purpose on the ML.

Oct 16, 2016

Redirecting hosts or replacing files just for one app with mount namespaces

My problem was this: how do you do essentially a split-horizon DNS for different apps in the same desktop session.

E.g. have claws-mail mail client go to localhost for someserver.com (because it has port forwarded thru "ssh -L"), while the rest of them (e.g. browser and such) keep using normal public IP.

Usually one'd use /etc/hosts for something like that, but it applies to all apps on the machine, of course.

Next obvious option (mostly because it's been around forever) is to LD_PRELOAD something that'd either override getaddrinfo() or open() for /etc/hosts, but that sounds like work and not included in util-linux (yet?).

Easiest and newest (well, new-ish, CLONE_NEWNS has been around since linux-3.8 and 2013) way to do that is to run the thing in its own "mount namespace", which sounds weird until you combine that with the fact that you can bind-mount files (like that /etc/hosts one).

So, the magic line is:

# unshare -m sh -c\
  'mount -o bind /etc/hosts.forwarding /etc/hosts
    && exec sudo -EHin -u myuser -- exec claws-mail'

Needs /etc/hosts.forwarding replacement-file for this app, which it will see as a proper /etc/hosts, along with root privileges (or CAP_SYS_ADMIN) for CLONE_NEWNS.

Crazy "sudo -EHin" shebang is to tell sudo not to drop much env, but still behave kinda as if on login, run zshrc and all that. "su - myuser" or "machinectl shell myuser@ -- ..." can also be used there.

Replacing files like /etc/nsswitch.conf or /etc/{passwd,group} that way, one can also essentially do any kind of per-app id-mapping - cool stuff.

Of course, these days sufficiently paranoid or advanced people might as well run every app in its own set of namespaces anyway, and have pretty much everything per-app that way, why the hell not.

Sep 25, 2016

nftables re-injected IPSec matching without xt_policy

As of linux-4.8, something like xt_policy is still - unfortunately - on the nftables TODO list, so to match traffic pre-authenticated via IPSec, some workaround is needed.

Obvious one is to keep using iptables/ip6tables to mark IPSec packets with old xt_policy module, as these rules interoperate with nftables just fine, with only important bit being ordering of iptables hooks vs nft chain priorities, which are rather easy to find in "netfilter_ipv{4,6}.h" files, e.g.:

enum nf_ip_hook_priorities {
  NF_IP_PRI_FIRST = INT_MIN,
  NF_IP_PRI_CONNTRACK_DEFRAG = -400,
  NF_IP_PRI_RAW = -300,
  NF_IP_PRI_SELINUX_FIRST = -225,
  NF_IP_PRI_CONNTRACK = -200,
  NF_IP_PRI_MANGLE = -150,
  NF_IP_PRI_NAT_DST = -100,
  NF_IP_PRI_FILTER = 0,
  NF_IP_PRI_SECURITY = 50,
  NF_IP_PRI_NAT_SRC = 100,
  NF_IP_PRI_SELINUX_LAST = 225,
  NF_IP_PRI_CONNTRACK_HELPER = 300,
  NF_IP_PRI_CONNTRACK_CONFIRM = INT_MAX,
  NF_IP_PRI_LAST = INT_MAX,
};

(see also Netfilter-packet-flow.svg by Jan Engelhardt for general overview of the iptables hook positions, nftables allows to define any number of chains before/after these)

So marks from iptables/ip6tables rules like these:

*raw
:PREROUTING ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A PREROUTING -m policy --dir in --pol ipsec --mode transport -j MARK --or-mark 0x101
-A OUTPUT -m policy --dir out --pol ipsec --mode transport -j MARK --or-mark 0x101
COMMIT

Will be easy to match in priority=0 input/ouput hooks (as NF_IP_PRI_RAW=-300) of nft ip/ip6/inet tables (e.g. mark and 0x101 == 0x101 accept)

But that'd split firewall configuration between iptables/nftables, adding more hassle to keep whole "iptables" thing initialized just for one or two rules.

xfrm transformation (like ipsec esp decryption in this case) seem to preserve all information about the packet intact, including packet marks (but not conntrack states, which track esp connection), which - as suggested by Florian Westphal in #netfilter - can be utilized to match post-xfrm packets in nftables by this preserved mark field.

E.g. having this (strictly before ct state {established, related} accept for stateful firewalls, as each packet has to be marked):

define cm.ipsec = 0x101
add rule inet filter input ip protocol esp mark set mark or $cm.ipsec
add rule inet filter input ip6 nexthdr esp mark set mark or $cm.ipsec
add rule inet filter input mark and $cm.ipsec == $cm.ipsec accept

Will mark and accept both still-encrypted esp packets (IPv4/IPv6) and their decrypted payload.

Note that this assumes that all IPSec connections are properly authenticated and trusted, so be sure not to use anything like that if e.g. opportunistic encryption is enabled.

Much simplier nft-only solution, though still not a full substitute for what xt_policy does, of couse.

Aug 31, 2016

Handy tool to wait for remote TCP port to open - TCP "ping"

Lack of some basic tool to "wait for connection" in linux toolkit always annoyed me to no end.

root@alarm~:~# reboot
Shared connection to 10.0.1.75 closed.

% ssh root@10.0.1.75

...time passes, ssh doesn't do anything...

ssh: connect to host 10.0.1.75 port 22: No route to host

% ssh root@10.0.1.75
ssh: connect to host 10.0.1.75 port 22: Connection refused
% ssh root@10.0.1.75
ssh: connect to host 10.0.1.75 port 22: Connection refused
% ssh root@10.0.1.75
ssh: connect to host 10.0.1.75 port 22: Connection refused

...[mashing Up/Enter] start it up already!...

% ssh root@10.0.1.75
ssh: connect to host 10.0.1.75 port 22: Connection refused
% ssh root@10.0.1.75

root@alarm~:~#

...finally!
Working a lot with ARM boards, can have this thing repeating few dozen times a day.
Same happens on every power-up, after fiddling with sd cards, etc.

And usually know for a fact that I'll want to reconnect to the thing in question asap and continue what I was doing there, but trying luck a few times with unresponsive or insta-failing ssh is rather counter-productive and just annoying.

Instead:

% tping 10.0.1.75 && ssh root@10.0.1.75
root@alarm~:~#

That's it, no ssh timing-out or not retrying fast enough, no "Connection refused" nonsense.

tping (code link, name is ping + fping + tcp ping) is a trivial ad-hoc script that opens new TCP connection to specified host/port every second (default for -r/--retry-delay) and polls connections for success/error/timeout (configurable) in-between, exiting as soon as first connection succeeds, which in example above means that sshd is now ready for sure.

Doesn't need extra privileges like icmp pingers do, simple no-deps python3 script.

Used fping as fping -qr20 10.0.1.75 && ssh root@10.0.1.75 before finally taking time to write that thing, but it does what it says on the tin - icmp ping, and usually results in "Connection refused" error from ssh, as there's gap between network and sshd starting.

One of these "why the hell it's not in coreutils or util-linux" tools for me now.

Aug 05, 2016

D3 chart for common temperature/rh time-series data

More D3 tomfoolery!

It's been a while since I touched the thing, but recently been asked to make a simple replacement for processing common-case time-series from temperature + relative-humidity (calling these "t" and "rh" here) sensors (DHT22, sht1x, or what have you), that's been painstakingly done in MS Excel (from tsv data) until now.

So here's the plot:

d3 t/rh chart image
Interactive version can be run directly from mk-fg/fgtk: d3-temp-rh-sensor-tsv-series-chart.html
Bunch of real-world data samples for the script: d3-temp-rh-sensor-tsv-series-chart.zip

Misc feats of the thing, in no particular order:

  • Single-html d3.v4.js + ES6 webapp (assembed by html-embed script) that can be opened from localhost or any static httpd on the net.
  • Drag-and-drop or multi-file browse/pick box, for uploading any number of tsv files (in whatever order, possibly with gaps in data) instantly to JS on the page.
  • Line chart with two Y axes (one for t, one for rh).
  • Smaller "overview" chart below that, where one can "brush" needed timespan (i.e. subset of uploaded data) for all the other charts and readouts.
  • Mouseover "vertical line" display snapping to specific datapoints.
  • List of basic stats for picked range - min/max, timespan, value count.
  • Histograms for value distribution, to easily see typical values for picked timespan, one for t and rh.

Kinda love this sort of interactive vis stuff, and it only takes a bunch of hours to put it all together with d3, as opposed to something like rrdtool, its dead images and quirky mini-language.

Also, surprisingly common use-case for this particular chart, as having such sensors connected to some RPi is pretty much first thing people usually want to do (or maybe close second after LEDs and switches).

Will probably look a bit further to make it into an offline-first Service Worker app, just for the heck of it, see how well this stuff works these days.

No point to this post, other than forgetting to write stuff for months is bad ;)

May 15, 2016

Debounce bogus repeated mouse clicks in Xorg with xbindkeys

My current Razer E-Blue mouse had this issue since I've got it - Mouse-2 / BTN_MIDDLE / middle-click (useful mostly as "open new tab" in browsers and "paste" in X) sometimes produces two click events (in rapid succession) instead of one.

It was more rare before, but lately it feels like it's harder to make it click once than twice.

Seem to be either hardware problem with debouncing circuitry or logic in the controller, or maybe a button itself not mashing switch contacts against each other hard enough... or soft enough (i.e. non-elastic), actually, given that they shouldn't "bounce" against each other.

Since there's no need to double-click that wheel-button ever, it looks rather easy to debounce the click on Xorg input level, by ignoring repeated button up/down events after producing the first full "click".

Easiest solution of that kind that I've found was to use guile (scheme) script with xbindkeys tool to keep that click-state data and perform clicks selectively, using xdotool:

(define razer-delay-min 0.2)
(define razer-wait-max 0.5)
(define razer-ts-start #f)
(define razer-ts-done #f)
(define razer-debug #f)

(define (mono-time)
  "Return monotonic timestamp in seconds as real."
  (+ 0.0 (/ (get-internal-real-time) internal-time-units-per-second)))

(xbindkey-function '("b:8") (lambda ()
  (let ((ts (mono-time)))
    (when
      ;; Enforce min ts diff between "done" and "start" of the next one
      (or (not razer-ts-done) (>= (- ts razer-ts-done) razer-delay-min))
      (set! razer-ts-start ts)))))

(xbindkey-function '(Release "b:8") (lambda ()
  (let ((ts (mono-time)))
    (when razer-debug
      (format #t "razer: ~a/~a delay=~a[~a] wait=~a[~a]\n"
        razer-ts-start razer-ts-done
        (and razer-ts-done (- ts razer-ts-done)) razer-delay-min
        (and razer-ts-start (- ts razer-ts-start)) razer-wait-max))
    (when
      (and
        ;; Enforce min ts diff between previous "done" and this one
        (or (not razer-ts-done) (>= (- ts razer-ts-done) razer-delay-min))
        ;; Enforce max "click" wait time
        (and razer-ts-start (<= (- ts razer-ts-start) razer-wait-max)))
      (set! razer-ts-done ts)
      (when razer-debug (format #t "razer: --- click!\n"))
      (run-command "xdotool click 2")))))

Note that xbindkeys actually grabs "b:8" here, which is a "mouse button 8", as if it was "b:2", then "xdotool click 2" command will recurse into same code, so wheel-clicker should be bound to button 8 in X for that to work.

Rebinding buttons in X is trivial to do on-the-fly, using standard "xinput" tool - e.g. xinput set-button-map "My Mouse" 1 8 3 (xinitrc.input script can be used as an extended example).

Running "xdotool" to do actual clicks at the end seem a bit wasteful, as xbindkeys already hooks into similar functionality, but unfortunately there's no "send input event" calls exported to guile scripts (as of 1.8.6, at least).

Still, works well enough as it is, fixing that rather annoying issue.

[xbindkeysrc.scm on github]

Mar 03, 2016

Python 3 killer feature - asyncio

I've been really conservative with the whole py2 -> py3 migration (shiny new langs don't seem to be my thing), but one feature that finally makes it worth the effort is well-integrated - by now (Python-3.5 with its "async" and "await" statements) - asyncio eventloop framework.

Basically, it's a twisted core, including eventloop hooked into standard socket/stream ops, sane futures implementation, all the Transports/Protocols/Tasks base classes and such concepts, standardized right there in Python's stdlib.

On one hand, baking this stuff into language core seem to be somewhat backwards, but I think it's actually really smart thing to do - not only it eliminates whole "tech zoo" problem nodejs ecosystem has, but also gets rid of "require huge twisted blob or write my own half-assed eventloop base" that pops-up in every second script, even the most trivial ones.

Makes it worth starting any py script with py3 shebang for me, at last \o/

Next → Page 1 of 11
Member of The Internet Defense League